1,103 research outputs found

    Calcitonin receptor-like receptor is expressed on gastrointestinal immune cells

    Get PDF
    Background/Aims: Pharmacological and morphological studies suggest that the gut mucosal immune system and local neuropeptide-containing neurones interact. We aimed to determine whether gut immune cells are targets for calcitonin gene-related peptide (CGRP), which has potent immune regulatory properties. Methods: Using density gradient centrifugation, rat lamina propria mononuclear cells (LP-MNCs) and intra-epithelial lymphocytes (IELs) were isolated. RT-PCR was employed for the detection of mRNA of rat calcitonin receptor-like receptor (CRLR), which is considered to represent the pharmacologically defined CGRP receptor-1 subtype, as well as mRNA of the receptor activity-modifying proteins, which are essential for CRLR function and determine ligand specificity. A radioreceptor assay was employed for the detection of specific CGRP binding sites. Results: RT-PCR and DNA sequencing showed that LP-MNCs and IELs express CRLR. Incubation of isolated LP-MNCs with radiolabelled alphaCGRP revealed the existence of specific binding sites for CGRP. Conclusion: These novel data indicate that mucosal immune cells of the rat gut are a target for CGRP and provide significant evidence that CGRP functions as an immune regulator in the gut mucosa. Copyright (C) 2002 S. Karger AG, Basel

    A Laboratory Investigation of Supersonic Clumpy Flows: Experimental Design and Theoretical Analysis

    Get PDF
    We present a design for high energy density laboratory experiments studying the interaction of hypersonic shocks with a large number of inhomogeneities. These ``clumpy'' flows are relevant to a wide variety of astrophysical environments including the evolution of molecular clouds, outflows from young stars, Planetary Nebulae and Active Galactic Nuclei. The experiment consists of a strong shock (driven by a pulsed power machine or a high intensity laser) impinging on a region of randomly placed plastic rods. We discuss the goals of the specific design and how they are met by specific choices of target components. An adaptive mesh refinement hydrodynamic code is used to analyze the design and establish a predictive baseline for the experiments. The simulations confirm the effectiveness of the design in terms of articulating the differences between shocks propagating through smooth and clumpy environments. In particular, we find significant differences between the shock propagation speeds in a clumpy medium compared to a smooth one with the same average density. The simulation results are of general interest for foams in both inertial confinement fusion and laboratory astrophysics studies. Our results highlight the danger of using average properties of inhomogeneous astrophysical environments when comparing timescales for critical processes such as shock crossing and gravitational collapse times.Comment: 7 pages, 6 figures. Submitted to the Astrophysical Journal. For additional information, including simulation animations and the pdf and ps files of the paper with embedded high-quality images, see http://pas.rochester.edu/~wm

    Covers of acts over monoids II

    Full text link
    In 1981 Edgar Enochs conjectured that every module has a flat cover and finally proved this in 2001. Since then a great deal of effort has been spent on studying different types of covers, for example injective and torsion free covers. In 2008, Mahmoudi and Renshaw initiated the study of flat covers of acts over monoids but their definition of cover was slightly different from that of Enochs. Recently, Bailey and Renshaw produced some preliminary results on the `other' type of cover and it is this work that is extended in this paper. We consider free, divisible, torsion free and injective covers and demonstrate that in some cases the results are quite different from the module case

    Multilingual assessment of early child development: Analyses from repeated observations of children in Kenya.

    Get PDF
    In many low- and middle-income countries, young children learn a mother tongue or indigenous language at home before entering the formal education system where they will need to understand and speak a countrys official language(s). Thus, assessments of children before school age, conducted in a nations official language, may not fully reflect a childs development, underscoring the importance of test translation and adaptation. To examine differences in vocabulary development by language of assessment, we adapted and validated instruments to measure developmental outcomes, including expressive and receptive vocabulary. We assessed 505 2-to-6-year-old children in rural communities in Western Kenya with comparable vocabulary tests in three languages: Luo (the local language or mother tongue), Swahili, and English (official languages) at two time points, 5-6 weeks apart, between September 2015 and October 2016. Younger children responded to the expressive vocabulary measure exclusively in Luo (44%-59% of 2-to-4-year-olds) much more frequently than did older children (20%-21% of 5-to-6-year-olds). Baseline receptive vocabulary scores in Luo (β = 0.26, SE = 0.05, p < 0.001) and Swahili (β = 0.10, SE = 0.05, p = 0.032) were strongly associated with receptive vocabulary in English at follow-up, even after controlling for English vocabulary at baseline. Parental Luo literacy at baseline (β = 0.11, SE = 0.05, p = 0.045) was associated with child English vocabulary at follow-up, while parental English literacy at baseline was not. Our findings suggest that multilingual testing is essential to understanding the developmental environment and cognitive growth of multilingual children

    XUV frequency comb production with an astigmatism-compensated enhancement cavity

    Get PDF
    We have developed an extreme ultraviolet (XUV) frequency comb for performing ultra-high precision spectroscopy on the many XUV transitions found in highly charged ions (HCI). Femtosecond pulses from a 100 MHz phase-stabilized near-infrared frequency comb are amplified and then fed into a femtosecond enhancement cavity (fsEC) inside an ultra-high vacuum chamber. The low-dispersion fsEC coherently superposes several hundred incident pulses and, with a single cylindrical optical element, fully compensates astigmatism at the w0 = 15 µm waist cavity focus. With a gas jet installed there, intensities reaching ∼ 1014 W/cm2 generate coherent high harmonics with a comb spectrum at 100 MHz rate. We couple out of the fsEC harmonics from the 7th up to the 35th (42 eV; 30 nm) to be used in upcoming experiments on HCI frequency metrology
    • …
    corecore